Efficient hinging hyperplanes neural network and its application in nonlinear system identification
نویسندگان
چکیده
منابع مشابه
Adaptive Hinging Hyperplanes
The model of adaptive hinging hyperplanes (AHH) is proposed in this paper for black-box modeling. It is based on Multivariate Adaptive Regression Splines (MARS) and Generalized Hinging Hyperplanes (GHH) and shares attractive properties of the two. By making a modification to the basis function of MARS, AHH shows linear property in each subarea. It is proved that AHH model is identical to a spec...
متن کاملSmooth Hinging Hyperplanes { an Alternative to Neural Nets
Recently a novel approach to nonlinear function approximation using hinging hyperplanes, was reported by L. Breiman 3]. In this contribution we have combined smooth hinging hyperplanes and the eecient initializa-tion procedure existing for hinging hyperplanes in 3], with a Gauss-Newton procedure, see 4], to perform the nal adjustment of the smooth hinging hyperplanes. This combination uses the ...
متن کاملNeural Network Sensitivity to Inputs and Weights and its Application to Functional Identification of Robotics Manipulators
Neural networks are applied to the system identification problems using adaptive algorithms for either parameter or functional estimation of dynamic systems. In this paper the neural networks' sensitivity to input values and connections' weights, is studied. The Reduction-Sigmoid-Amplification (RSA) neurons are introduced and four different models of neural network architecture are proposed and...
متن کاملNonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms
Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...
متن کاملNonlinear System Identification Using Neural Network
Magneto-rheological damper is a nonlinear system. In this case study, system has been identified using Neural Network tool. Optimization between number of neurons in the hidden layer and number of epochs has been achieved and discussed by using multilayer perceptron Neural Network.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Automatica
سال: 2020
ISSN: 0005-1098
DOI: 10.1016/j.automatica.2020.108906